12x^2+116x-204=0

Simple and best practice solution for 12x^2+116x-204=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x^2+116x-204=0 equation:


Simplifying
12x2 + 116x + -204 = 0

Reorder the terms:
-204 + 116x + 12x2 = 0

Solving
-204 + 116x + 12x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '4'.
4(-51 + 29x + 3x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(-51 + 29x + 3x2)' equal to zero and attempt to solve: Simplifying -51 + 29x + 3x2 = 0 Solving -51 + 29x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -17 + 9.666666667x + x2 = 0 Move the constant term to the right: Add '17' to each side of the equation. -17 + 9.666666667x + 17 + x2 = 0 + 17 Reorder the terms: -17 + 17 + 9.666666667x + x2 = 0 + 17 Combine like terms: -17 + 17 = 0 0 + 9.666666667x + x2 = 0 + 17 9.666666667x + x2 = 0 + 17 Combine like terms: 0 + 17 = 17 9.666666667x + x2 = 17 The x term is 9.666666667x. Take half its coefficient (4.833333334). Square it (23.36111112) and add it to both sides. Add '23.36111112' to each side of the equation. 9.666666667x + 23.36111112 + x2 = 17 + 23.36111112 Reorder the terms: 23.36111112 + 9.666666667x + x2 = 17 + 23.36111112 Combine like terms: 17 + 23.36111112 = 40.36111112 23.36111112 + 9.666666667x + x2 = 40.36111112 Factor a perfect square on the left side: (x + 4.833333334)(x + 4.833333334) = 40.36111112 Calculate the square root of the right side: 6.353039518 Break this problem into two subproblems by setting (x + 4.833333334) equal to 6.353039518 and -6.353039518.

Subproblem 1

x + 4.833333334 = 6.353039518 Simplifying x + 4.833333334 = 6.353039518 Reorder the terms: 4.833333334 + x = 6.353039518 Solving 4.833333334 + x = 6.353039518 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.833333334' to each side of the equation. 4.833333334 + -4.833333334 + x = 6.353039518 + -4.833333334 Combine like terms: 4.833333334 + -4.833333334 = 0.000000000 0.000000000 + x = 6.353039518 + -4.833333334 x = 6.353039518 + -4.833333334 Combine like terms: 6.353039518 + -4.833333334 = 1.519706184 x = 1.519706184 Simplifying x = 1.519706184

Subproblem 2

x + 4.833333334 = -6.353039518 Simplifying x + 4.833333334 = -6.353039518 Reorder the terms: 4.833333334 + x = -6.353039518 Solving 4.833333334 + x = -6.353039518 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.833333334' to each side of the equation. 4.833333334 + -4.833333334 + x = -6.353039518 + -4.833333334 Combine like terms: 4.833333334 + -4.833333334 = 0.000000000 0.000000000 + x = -6.353039518 + -4.833333334 x = -6.353039518 + -4.833333334 Combine like terms: -6.353039518 + -4.833333334 = -11.186372852 x = -11.186372852 Simplifying x = -11.186372852

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.519706184, -11.186372852}

Solution

x = {1.519706184, -11.186372852}

See similar equations:

| 8x+6x^2=15x+3x^2 | | 26-3g=8 | | (3i+2j)(7i+9j)= | | 56=-28n | | x+2=3(82-x) | | 3(x+1)(x+1)-(x+3)(2x+2)=0 | | 7x-2=7x+28 | | 8-6x=14-7 | | -8y+32=5-7y | | (x+4)(x+4)-(3x-7)(3x-7)=0 | | 6x+27=-38+47 | | 1.5x-0.33x+0.33+4x+8=180 | | Pi*49= | | ln(x+2)+ln(2x+2)=ln(40) | | ln(x+2)+ln(2x+2)= | | 3(v+8)-5v=14 | | 7(-3y+2)=3(8+7y) | | 6a+b=-3 | | 24-3x=9 | | (9x+7)-(3x-2)= | | 9a+3b+c=4 | | 12-10x=122-45x | | 8y+7=-6y+2 | | 10+4x=3(7x-4)+5x | | -21p^2-24p=12 | | (-x^5)(-x)= | | 10x+2=-2+4 | | 2kx*2kx=0 | | (3x+9)+(6x+7)= | | 5x+10=4x+15 | | 6x+10y+11=0 | | x^2+2kx-7=0 |

Equations solver categories